Abstract

The localization of the North Anatolian Fault in the northern Aegean Sea (North Aegean Trough) is an intriguing example of continental transform fault propagation. Understanding this process critically depends on the quantification of strike-slip displacement and the superposition of normal and strike-slip faulting in the region, which is the aim of this study. In particular, we unravel and quantify normal and dextral faulting along the Alonnisos fault system, at the south-western margin of the North Aegean Trough (Sporades Basin). We present detailed structural data collected from Messinian strata of Alonnisos to infer the amount of post-5 Ma tilting and shortening on the island, and relate them to normal and dextral faulting along the Alonnisos fault system through simple analytical half-space models of dislocations. The Messinian rocks of Alonnisos record significant (13.5°) tilting and gentle folding close to the termination zone of the main fault segment. The tilting of the Messinian rocks was related to footwall uplift during normal faulting (in the order of 6–7 km vertical displacement) along the Alonnisos fault system, which implies that the deepening of the Sporades Basin occurred post-5 Ma. The post-Messinian folding accommodated ∼1 km shortening along the footwall termination zone of the Alonnisos fault and was related to 3–4 km dextral slip, possibly during the last 100–200 kyr. This is the first clear indication of major dextral displacement along the Alonnisos fault system. Our results support interpretations of currently distributed dextral strain in the North Aegean in response to the propagation of the North Anatolian Fault. However, similarities with the evolution of the Sea of Marmara might suggest that dextral shear could yet become fully localized in the NAT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call