Abstract

Although labelled glutamine is readily incorporated into labelled releasable GABA, it has been shown recently that high concentrations (0.1–0.5 mM) glutamine do not increase the release of GABA from brain slices, while greatly enhancing that of glutamate. Two possible reasons for this discrepancy were investigated: (a) That released GABA, in contrast to glutamate is not freshly synthesized but derives from GABA taken up by terminals. The possibility was made unlikely by the present finding which showed that even in the presence of the uptake inhibitor nipecotic acid, glutamine failed to enhance GABA release. (b) That glutamine is transported into GABA-ergic terminals by a high-affinity transport system which is saturated even at low glutamine concentrations obtained without adding glutamine to the superfusion fluid. However, when glutamine efflux was further reduced by prolonging depolarization with 50 mM K + and by pretreatment with the glutamine synthetase inhibitor methionine sulfoximine, GABA release was depressed only very little and this decrease was related to the duration of depolarization and not to extracellular glutamine levels. These results can be reconciled with the ready incorporation of labelled glutamine into releasable GABA by assuming that GABA originates from a glutamate pool to which both glutamine and glucose contribute. The formation of releasable GABA however, is not governed by the supply of glutamate in this pool but by the activity of the rate-limiting enzyme glutamate decarboxylase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call