Abstract
The positive-parity signature partner bands in 103,105Pd and 109Cd nuclei are investigated using the classical particle-rotor model. Based on the systematic study of neighbouring nuclei, the signature partner bands of 105Pd are assigned to the configuration, and this assignment is also supported by the present calculations. Furthermore, the calculated values of such bands of 105Pd reproduce the experimental values well and exhibit a decrease with increasing angular momentum, suggesting that these two bands may originate from antimagnetic rotation. Similar signature partner bands are also found in the neighboring 103Pd and 109Cd nuclei. The properties of both bands are in general agreement with the fingerprints of antimagnetic rotation, and thus the signature partner bands of 103Pd and 109Cd are suggested to be candidates for the multiple antimagnetic rotational bands of 105Pd. In addition, the evolution of the two-shears-like mechanism for possible multiple antimagnetic rotational bands in 103,105Pd and 109Cd nuclei is examined by investigating the orientation of the angular momenta.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have