Abstract

With the rapid growth in the use of NdFeB-type magnets and with the growing environmental need to conserve both energy and raw materials, the recycling of these magnets is becoming an ever important issue. In this paper it is demonstrated that hydrogen could play a vital role in this process. Fully dense sintered NdFeB-type magnets have been subjected to the hydrogen decrepitation (HD) process. The resultant powder has been subsequently processed in one of two ways in order to produce permanent magnets. Firstly, the powder was subjected to a vacuum degassing treatment over a range of temperatures up to 1000 °C in order to produce powder that would be suitable for the production of anisotropic bonded or hot pressed magnets. Secondly, the HD-powder has been used to produce fully dense sintered magnets; in which case optimisation of the milling time, sintering temperature and time was carried out. The optimum degassing temperature for coercive powder was found to be 700 °C, giving powder with a remanence (Br) of ∼1350 mT (±50 mT) and an intrinsic coercivity (Hcj) of ∼750 kA m −1 (±50 kA m −1). The best sintered magnet was produced by very lightly milling the powder (30 min, roller ball mill), aligning, pressing and vacuum sintering at 1080 °C for 1 h. The magnetic properties of this magnet were: (BH) max = 290 kJ m −3 (±5 kJ m −3), Br = 1240 mT (±50 mT) and Hcj = 830 kA m −1 (±50 kA m −1); representing decreases of 15%, 10% and 20%, respectively, from the properties of the initial magnet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.