Abstract
The thioredoxin (TRX) system, composed of nicotinamide adenine dinucleotide phosphate (reduced form), TRX, and TRX reductase (TRXR), has multiple biologic functions via thiol-mediated redox control. In this study, we investigated the relationship between intracellular TRXR levels and cellular sensitivity to cis-diamminedichloroplatinum (II) (CDDP). HeLa, a human cervical carcinoma cell line, cultured with CDDP showed a time- and dose-dependent reduction of intracellular TRXR activity, which was well correlated with the decrease in cell viability after exposure to CDDP. In a cell-free system, CDDP was found to directly inactivate the reduced form of purified human TRXR. The CDDP-resistant variants of HeLa cells, established by continuous exposure to CDDP, exhibited an increased expression and activity of TRXR as well as TRX compared with the parental cells. In addition, sodium selenate, an inhibitor of TRXR, was found to increase the susceptibility to CDDP in the CDDP-resistant cells. Moreover, the HeLa cells transfected with an antisense TRXR RNA expression vector to reduce the intracellular enzyme activity displayed an enhanced sensitivity to CDDP. Taken together with previous reports on TRX, these results indicate the possible involvement of TRXR as well as TRX in the cellular sensitivity and resistance to CDDP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.