Abstract

Behavioral and electrophysiological experiments were conducted to examine whether frequency-modulated electrocommunication signals are detected by the ampullary electroreceptor system in Eigenmannia. First, frequency-modulated electric organ discharges were found to contain a low-frequency component that could be detected by the ampullary system. Second, fish were successfully trained to distinguish a frequency-modulated signal, which contained a low-frequency component as in natural signals, from an artificial signal in which the low-frequency component was eliminated but still modulated in frequency. Subsequently, the trained fish responded without reinforcement to a low-frequency sinusoidal signal which mimicked the low-frequency component in the frequency-modulated signal, suggesting that the fish used the ampullary system to detect frequency modulation. Finally, physiological recording from ampullary afferent fibers demonstrated that they respond to frequency-modulated signals as predicted from the signal's low-frequency component. Electrophysiological study also showed that detection of frequency modulation by the ampullary system is immune to the presence of other constant electric organ discharges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.