Abstract

Abstract. This numerical model study is motivated by the observed global deviation from assumed emissions of chlorofluorocarbon-11 (CFC-11, CFCl3) in recent years. Montzka et al. (2018) discussed a strong deviation of the assumed emissions of CFC-11 over the past 15 years, which indicates a violation of the Montreal Protocol for the protection of the ozone layer. An investigation is performed which is based on chemistry–climate model (CCM) simulations that analyze the consequences of an enhanced CFC-11 surface mixing ratio. In comparison to a reference simulation (REF-C2), where a decrease of the CFC-11 surface mixing ratio of about 50 % is assumed from the early 2000s to the middle of the century (i.e., a mixing ratio in full compliance with the Montreal Protocol agreement), two sensitivity simulations are carried out. In the first simulation the CFC-11 surface mixing ratio is kept constant after the year 2002 until 2050 (SEN-C2-fCFC11_2050); this allows a qualitative estimate of possible consequences of a high-level stable CFC-11 surface mixing ratio on the ozone layer. In the second sensitivity simulation, which is branched off from the first sensitivity simulation, it is assumed that the Montreal Protocol is fully implemented again starting in the year 2020, which leads to a delayed decrease of CFC-11 in this simulation (SEN-C2-fCFC11_2020) compared with the reference simulation; this enables a rough and most likely upper-limit assessment of how much the unexpected CFC-11 emissions to date have already affected ozone. In all three simulations, the climate evolves under the same greenhouse gas scenario (i.e., RCP6.0) and all other ozone-depleting substances decline (according to this scenario). Differences between the reference (REF-C2) and the two sensitivity simulations (SEN-C2-fCFC11_2050 and SEN-C2-fCFC11_2020) are discussed. In the SEN-C2-fCFC11_2050 simulation, the total column ozone (TCO) in the 2040s (i.e., the years 2041–2050) is particularly affected in both polar regions in winter and spring. Maximum discrepancies in the TCO values are identified with reduced ozone values of up to around 30 Dobson units in the Southern Hemisphere (SH) polar region during SH spring (in the order of 15 %). An analysis of the respective partial column ozone (PCO) for the stratosphere indicates that the strongest ozone changes are calculated for the polar lower stratosphere, where they are mainly driven by the enhanced stratospheric chlorine content and associated heterogeneous chemical processes. Furthermore, it was found that the calculated ozone changes, especially in the upper stratosphere, are surprisingly small. For the first time in such a scenario, we perform a complete ozone budget analysis regarding the production and loss cycles. In the upper stratosphere, the budget analysis shows that the additional ozone depletion due to the catalysis by reactive chlorine is partly compensated for by other processes related to enhanced ozone production or reduced ozone loss, for instance from nitrous oxide (NOx). Based on the analysis of the SEN-C2-fCFC11_2020 simulation, it was found that no major ozone changes can be expected after the year 2050, and that these changes are related to the enhanced CFC-11 emissions in recent years.

Highlights

  • The estimation of the future evolution of the ozone layer is a central part of the UNEP/WMO Scientific Assessment of Ozone Depletion

  • After the detection of an unexpected and persistent increase in global emissions of CFC-11 (Montzka et al, 2018; see update in Harris et al, 2019), it is still unclear (i) how much these additional emissions have already affected stratospheric ozone, (ii) how the CFC-11 emissions could further develop in the coming years, and (iii) how large the potential for a disturbance of the temporal evolution of the ozone layer is

  • The discussions during the international CFC-11 Symposium in Vienna (March 2019) on the unexpected increase of CFC-11 emissions came to the conclusion that a major problem is the creation of a realistic assessment of future CFC-11 levels (Harris et al, 2019)

Read more

Summary

Introduction

The estimation of the future evolution of the ozone layer is a central part of the UNEP/WMO Scientific Assessment of Ozone Depletion. In comparison with the reference simulation (REF-C2), the SENC2-fCFC11_2050 sensitivity simulation allows us to investigate the potential impact of previously unaccounted for CFC11 emissions It enables a rough estimation of the additional possible ozone loss under a constant CFC-11 surface mixing ratio in the coming years and how it may impact the timing of the full recovery of the ozone layer. After an 18-year period with a constant CFC-11 surface mixing ratio (in line with SEN-C2-fCFC11_2050 from 2002 to 2019), the CFC-11 surface mixing ratio is decreased in the following years (in parallel with REF-C2) under the assumption that the recent additional CFC-11 emissions will drop down to zero starting in the year 2020 It is the aim of this study to show when and where ozone loss occurs due to the additional influx of CFC-11 into the atmosphere while other ODSs decline as expected. The discussion and conclusion are presented at the end of this paper

Description of the model and simulations
Reactive chlorine
Total and partial ozone columns
Stratospheric ozone budget
Findings
Discussions and conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call