Abstract

The spectrum and morphology of gamma rays from the Galactic center and the spectrum of synchrotron emission observed from the Milky Way's radio filaments have each been interpreted as possible signals of ∼ 7-10 GeV dark matter particles annihilating in the inner Galaxy. In dark matter models capable of producing these signals, the annihilations should also generate significant fluxes of ∼ 7-10 GeV positrons which can lead to a distinctive bumplike feature in a local cosmic ray positron spectrum. In this Letter, we show that while such a feature would be difficult to detect with PAMELA, it would likely be identifiable by the currently operating Alpha Magnetic Spectrometer experiment. As no known astrophysical (i.e., nondark matter) sources or mechanisms are likely to produce such a sharp feature, the observation of a positron bump at around 7-10 GeV would significantly strengthen the case for a dark matter interpretation of the reported gamma-ray and radio anomalies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.