Abstract

High-pressure phases of silicon such as Si-XII/Si-III exhibit attractive optical, electrical and chemical properties, but until now, it has been technologically impossible to produce a significant quantity of Si-XII or Si-III. In this study, to explore the possibility of generating high-pressure silicon phases efficiently, comparative nanoindentation experiments were conducted. Effects of the loading rate, unloading rate and maximum indentation load were investigated, and key factors affecting the high-pressure phase formation were identified. A new nanoindentation protocol is proposed that introduces an intermediate holding stage into the unloading process. The resulting end phases under the indent were detected by a laser micro-Raman spectrometer and compared with those formed in conventional nanoindentation. The results indicate that high-pressure phases Si-XII and Si-III were successfully formed during the intermediate holding stage even with a very high loading/unloading rate. This finding demonstrates the possibility of rapid production of high-pressure phases of silicon through fast mechanical loading and unloading.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call