Abstract
Transport properties of positron swarms in water vapour under the influence of electric and magnetic fields are investigated using a Monte Carlo simulation technique and a multi-term theory for solving the Boltzmann equation. Special attention is paid to the correct treatment of the non-conservative nature of positronium (Ps) formation and its explicit and implicit influences on various positron transport properties. Many interesting and atypical phenomena induced by these influences are identified and discussed. Calculated transport properties for positrons are compared with those for electrons, and the most important differences are highlighted. The significant impact of a magnetic field on non-conservative positron transport in a crossed field configuration is also investigated. In general, the mean energy and diffusion coefficients are lowered, while for the measurable drift velocity an unexpected phenomenon arises: for certain values of the reduced electric field, the magnetic field enhances the drift. The variation of transport coefficients with the reduced electric and magnetic fields is addressed using physical arguments with the goal of understanding the synergistic effects of Ps formation and magnetic field on the drift and diffusion of positrons in neutral gases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.