Abstract

An understanding of the behavior of defects containing hydrogen or helium in tungsten is an important issue. Here the properties of defects in tungsten containing hydrogen or helium atoms have been investigated by model positron lifetime quantum-mechanical simulations. The electron and positron wave functions have been obtained in the local density approximation to the two-component density-functional theory. The calculated values of the positron lifetime correlate with the magnitude of the electron density. The vacancy-clusters without hydrogen or helium are active positron traps. The lattice relaxation of atoms around vacancy reduces the effective vacancy volume and decrease the positron lifetime at a vacancy. The hydrogen and helium atoms are trapped in tungsten by lattice vacancies and nano-voids. It was established that positron lifetime depends on the density of gas atoms inside the nano-void. Hydrogen and helium presence in the larger nano-voids considerably decrease the positron lifetime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call