Abstract

Positron emission tomography (PET) is an established tool for molecular imaging of cancers, and its role in diagnosis, staging, and phenotyping continues to evolve and expand rapidly. PET imaging of increased glucose utilization with 18F-fluorodeoxyglucose is now entrenched in clinical oncology practice for improving prognostication and treatment response assessment. Additional critical processes for cancer cell survival can also be imaged by PET, helping to inform individualized treatment selections for patients by improving our understanding of cell survival mechanisms and identifying relevant active mechanisms in each patient. The critical importance of quantifying cell proliferation and DNA repair pathways for prognosis and treatment selection is highlighted by the nearly ubiquitous use of the Ki-67 index, an established histological quantitative measure of cell proliferation, and BRCA mutation testing for treatment selection. This review focuses on PET advances in imaging and quantifying cell proliferation and poly(ADP-ribose)polymerase expression that can be used to complement cancer phenotyping approaches that will identify the most effective treatments for each individual patient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.