Abstract

In this paper, we present an approach to fully automate tumor delineation in positron emission tomography (PET) images. PET images play a major role in medicine for in vivo imaging in oncology (PET images are used to evaluate oncology patients, detecting emitted photons from a radiotracer localized in abnormal cells). PET image tumor delineation plays a vital role both in pre- and post-treatment stages. The low spatial resolution and high noise characteristics of PET images increase the challenge in PET image segmentation. Despite the difficulties and known limitations, several image segmentation approaches have been proposed. This paper introduces a new unsupervised approach to perform tumor delineation in PET images using Atanassov’s intuitionistic fuzzy sets (A-IFSs) and restricted dissimilarity functions. Moreover, the implementation of this methodology is presented and tested against other existing methodologies. The proposed algorithm increases the accuracy of tumor delineation in PET images, and the experimental results show that the proposed method outperformed all methods tested.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call