Abstract

H interaction with defects in thin Nb films was investigated in this work. Thin Nb films were prepared by the cold cathode beam sputtering. First, microstructure of the as deposited films was characterized. The films sputtered at room temperature exhibit nanocrystalline grains, while those sputtered at high temperature ( T = 850 °C) are epitaxial. Subsequently, the films were step-by-step electrochemically charged with H. Development of microstructure and evolution of defect structure with increasing H concentration was investigated by slow positron implantation spectroscopy combined with X-ray diffraction. It was found that H is trapped at open-volume defects in the thin films of both kinds. The nanocrystalline films exhibit significantly extended H solubility in the α-phase. Formation of the hydride-phase (Nb-H) at higher H concentrations leads to introduction of new defects. These are most probably dislocation loops that are emitted by growing hydride-phase particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call