Abstract

Hydrogen interaction with defects in thin niobium (Nb) films was investigated using slow positron implantation spectroscopy (SPIS) combined with X-ray diffraction (XRD) and transmission electron microscopy (TEM). Thin Nb films on Si substrates were prepared using cathode beam sputtering at room temperature. Initially, the microstructure of the virgin (hydrogen-free) films was characterized. Subsequently, the films were step-by-step electrochemically charged with hydrogen and the evolution of the microstructure with increasing hydrogen concentration was monitored. Hydrogen loading leads to a significant lattice expansion which was measured by XRD. Contrary to free-standing bulk metals, thin films are highly anisotropic. The in-plane expansion is prevented because the films are clamped on the elastically hard substrate. On the other hand, the out-of-plane expansion is substantially higher than in the bulk samples. Moreover, an enhanced hydrogen solubility in the α-phase was found in nanocrystalline Nb films. It was found that most of positrons in the films are trapped at open-volume defects at grain boundaries (GBs). These defects represent trapping sites also for hydrogen atoms. Hydrogen trapping at vacancy-like defects like GBs leads to a local increase of the electron density and is reflected by a pronounced decrease of the S parameter in the hydrogen-loaded samples. In addition, it was found that new defects are introduced at higher concentrations of hydrogen due to the formation of NbH (β-phase) particles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call