Abstract

The hexagon-form-factor program was proposed as a way to compute three-and higher-point correlation functions in mathcal{N}=4 super-symmetric Yang-Mills theory and in the dual AdS5×S5 superstring theory, by exploiting the integrability of the theory in the ’t Hooft limit. This approach is reminiscent of the asymptotic Bethe ansatz in that it applies to a large-volume expansion. Finite-volume corrections can be incorporated through Lüscher-like formulae, though the systematics of this expansion is largely unexplored so far. Strikingly, finite-volume corrections may feature negative powers of the ’t Hooft coupling g in the small-g expansion, potentially leading to a breakdown of the formalism. In this work we show that the finite-volume perturbation theory for the hexagon is positive and thereby compatible with the weak-coupling expansion for arbitrary n-point functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.