Abstract

Let M 3 be a non-compact hyperbolic 3-manifold that has a triangulation by positively oriented ideal tetrahedra. We show that the gluing variety defined by the gluing consistency equations is a smooth complex manifold with dimension equal to the number of boundary components of M 3. Moreover, we show that the complex lengths of any collection of non-trivial boundary curves, one from each boundary component, give a local holomorphic parameterization of the gluing variety. As an application, some estimates for the size of hyperbolic Dehn surgery space of once-punctured torus bundles are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.