Abstract

We shall prove dispersive and smoothing estimates for Bochner type laplacians on some non-compact Riemannian manifolds with negative Ricci curvature, in particular on hyperbolic spaces. These estimates will be used to prove Fujita-Kato type theorems for the incompressible Navier-Stokes equations. We shall also discuss the uniqueness of Leray weak solutions in the two dimensional case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.