Abstract

ABSTRACTLinear low density polyethylene (LLDPE)/high density polyethylene (HDPE) blends doped conductive graphite powders were constructed by the traditional melt‐blending method to acquire the conductive compatible polymer composites, and corresponding positive temperature coefficient (PTC) effect of electrical resistivity was investigated. The results indicated that the room‐temperature resistivity gradually decreased and PTC effects were remarkably enhanced by regulating the graphite contents or LLDPE/HDPE ratios. Especially, with increasing graphite contents, the polymer‐fixed composites showed the notable double PTC effects, originating from the volume expansion of the co‐crystallization or their fraction. Whereas, with increasing the LLDPE/HDPE ratio, the PTC effects of the graphite‐fixed composites occurred at the lower temperature, even far below the melting points of the co‐crystallization. Therefore, the regulation of co‐crystallization morphology of compatible polymer matrices was a new idea in the improvement of PTC materials. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46453.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call