Abstract

We deal with positive solutions for the Neumann boundary value problem associated with the scalar second order ODE $$ u'' + q(t)g(u) = 0, \quad t \in [0, T], $$ where $g: [0, +\infty[\, \to \mathbb{R}$ is positive on $\,]0, +\infty[\,$ and $q(t)$ is an indefinite weight. Complementary to previous investigations in the case $\int_0^T q(t) < 0$, we provide existence results for a suitable class of weights having (small) positive mean, when $g'(u) < 0$ at infinity. Our proof relies on a shooting argument for a suitable equivalent planar system of the type $$ x' = y, \qquad y' = h(x)y^2 + q(t), $$ with $h(x)$ a continuous function defined on the whole real line.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call