Abstract

We consider a nonlinear parametric Dirichlet equation driven by a nonhomogeneous differential operator involving a reaction exhibiting the competing effects of concave and convex terms. Using variational methods combined with truncation and comparison techniques we prove a bifurcation near zero theorem describing the dependence of the positive solutions on the parameter \(\lambda >0\).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.