Abstract

In this paper, we consider the following higher-order semipositone nonlocal Riemann-Liouville fractional differential equation D0+αx(t)+f(t,x(t),D0+βx(t))+e(t)=0, 0<t<1,D0+βx(0)=D0+β+1x(0)=⋯=D0+n+β-2x(0)=0, and D0+βx(1)=∑i=1m-2ηiD0+βx(ξi), where D0+α and D0+β are the standard Riemann-Liouville fractional derivatives. The existence results of positive solution are given by Guo-krasnosel’skii fixed point theorem and Schauder’s fixed point theorem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.