Abstract

The cause of adaptive protein evolution includes internal (for example, co-evolution of ligand-receptor pairs) and external (for example, adaptation to different ecological niches) mechanisms. Host defense peptides (HDPs) are a class of vertebrate-specific cationic antimicrobial peptides evolving under positive selection. Besides their antibiotic activity, HDPs also exert an effect on multiple host immune cells, thus providing an ideal model to study selective agents driving their evolution. On the basis of a combination of computational and experimental approaches, we studied the evolution of LL-37-type HDPs in mammals, the mature peptide of cathelicidin CAP18 (herein termed CAP18-MP) and investigated the driving force behind the evolution. Using codon-substitution maximum likelihood models, we analyzed CAP18-MPs in 40 species belonging to nine mammalian Orders and identified four positively selected sites (PSSs) that all are located on two terminal unordered regions of CAP18-MPs. Grafting the two positively selected regions of human or whale CAP18-MP to the α-helical scaffold of a rabbit homolog (substituting its corresponding parts) led to no alterations in antibacterial activity, spectrum and action mode. Likewise, further deletion of the two terminal regions did not alter its functional features. Evolutionary conservation analysis of mammalian FPR2, a receptor known to interact with the C-terminal positively selected region of LL-37, revealed high evolutionary variability in its ligand-binding extracellular loop domains, matching sequence diversity of the unordered regions in CAP18-MPs. This is the first report describing that the signature of positive selection of cathelicidins is not associated with their direct bactericidal activity, but rather with the evolutionary variability of their endogenous receptors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.