Abstract

The problem of the positive integer solution of the equation Xn = A for different-order matrices is important to solve a large range of problems related to the modeling of economic and social processes. The need to solve similar problems also arises in areas such as management theory, dynamic programming technique for solving some differential equations. In this connection, it is interesting to question the existence of positive and positive integer solutions of the nonlinear equations of the form Xn = A for different-order matrices in the case of the positive integer n. The purpose of this work is to explore the possibility of using analytical methods to obtain positive integer solutions of nonlinear matrix equations of the form Xn = A where A, X are the third-order matrices, n is the positive integer. Elements of the original matrix A are integer and positive numbers. The present study found that when the root of the nth degree of the third-order matrix will have zero diagonal elements and nonzero and positive off-diagonal elements, the root of the nth degree of the third-order matrix will have two zero diagonal elements and nonzero positive off-diagonal elements. It was shown that to solve the problem of finding positive integer solutions of the matrix equation for third-order matrices in the case of the positive integer n, the analytical techniques can be used. The article presents the formulas that allow one to find the roots of positive integer matrices for n = 3,…,5. However, the methodology described in the article can be adopted to find the natural roots of the third-order matrices for large n.

Highlights

  • The problem of the positive integer solution of the equation Xn = A for different-order matrices is important to solve a large range of problems related to the modeling of economic and social processes

  • The present study found that when the root of the nth degree of the third-order matrix will have zero diagonal elements and nonzero and positive off-diagonal elements, the root of the nth degree of the third-order matrix will have two zero diagonal elements and nonzero positive off-diagonal elements

  • It was shown that to solve the problem of finding positive integer solutions of the matrix equation for third-order matrices in the case of the positive integer n, the analytical techniques can

Read more

Summary

Introduction

166 Proceedings of the National academy of sciences of Belarus, рhysics and mathematics series, 2018, vol 54, no. Являющиеся элементами матрицы Х, представляют собой целые положительные числа, то система уравнений (1) разрешима в целых положительных числах, иначе можно сделать вывод, что мат­ рица А не имеет ни одного корня четвертой степени рассматриваемого вида.

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.