Abstract
Woody plant encroachment is affecting vegetation composition in arid grasslands worldwide and has been associated with a number of environmental drivers and feedbacks. It has been argued that the relatively abrupt character (both in space and in time) of grassland‐to‐shrubland transitions observed in many drylands around the world might result from positive feedbacks in the underlying ecosystem dynamics. In the case of the Chihuahuan Desert, we show that one such feedback could emerge from interactions between vegetation and microclimate conditions. Shrub establishment modifies surface energy fluxes, causing an increase in nighttime air temperature, particularly during wintertime. The resulting change in winter air temperature regime is important because the northern limit of the dominant shrub in the northern Chihuahuan Desert, Larrea tridentata, presently occurs where minimum temperatures are sufficiently low to be a potential source of mortality. Using freezing responses from published studies in combination with observed temperature records, we predict that a small warming can yield meaningful changes in plant function and survival. Moreover, we also suggest that the effect of the change in air temperature on vegetation depends on whether plants experience drought during winter. Thus, in the Chihuahuan region a positive feedback exists between shrub encroachment and changes in microclimate conditions, with implications for the response of this ecosystem to regional changes in temperature and precipitation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have