Abstract

The effects of thermosonication processing (TS, 90 °C, ultrasound powers of 200, 400, and 600 W) on the quality parameters of Jamun fruit dairy dessert compared to conventional heating processing (high-temperature short time, (HTST), 90 °C/20 s) were evaluated. Microbiological inactivation and stability, rheological parameters, physical properties, volatile and fatty acid profiles, and bioactive compounds were assessed. TS provided more significant microbial inactivation (1 log CFU mL−1) and higher microbial stability during storage (21 days) than HTST, with 3, 2, and 2.8 log CFU mL−1 lower counts for yeasts and molds, aerobic mesophilic bacteria, and lactic acid bacteria, respectively. In addition, TS-treated samples showed higher anti-hypertensive (>39%), antioxidant (>33%), and anti-diabetic (>27%) activities, a higher concentration of phenolic compounds (>22%), preservation of anthocyanins, and better digestibility due to the smaller fat droplet size (observed by confocal laser scanning microscopy). Furthermore, lower TS powers (200 W) improved the fatty acid (higher monounsaturated and polyunsaturated fatty acid contents, 52.78 and 132.24%) and volatile (higher number of terpenes, n = 5) profiles and decreased the atherogenic index. On the other hand, higher TS powers (600 W) maintained the rheological parameters of the control product and contributed more significantly to the functional properties of the products (antioxidant, anti-hypertensive, and anti-diabetic). In conclusion, TS proved to be efficient in treating Jamun fruit dairy dessert, opening space for new studies to define process parameters and expand TS application in other food matrices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.