Abstract

Let $K$ be a closed convex cone with dual $\dual{K}$ in a finite-dimensional real Hilbert space. A \emph{positive operator} on $K$ is a linear operator $L$ such that $L\of{K} \subseteq K$. Positive operators generalize the nonnegative matrices and are essential to the Perron-Frobenius theory. It is said that $L$ is a \emph{\textbf{Z}-operator} on $K$ if % \begin{equation*} \ip{L\of{x}}{s} \le 0 \;\text{ for all } \pair{x}{s} \in \cartprod{K}{\dual{K}} \text{ such that } \ip{x}{s} = 0. \end{equation*} % The \textbf{Z}-operators are generalizations of \textbf{Z}-matrices (whose off-diagonal elements are nonpositive) and they arise in dynamical systems, economics, game theory, and elsewhere. In this paper, the positive and \textbf{Z}-operators are connected. This extends the work of Schneider, Vidyasagar, and Tam on proper cones, and reveals some interesting similarities between the two families.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call