Abstract
It has been shown by Lemke that if a matrix is copositive plus on ℝ n , then feasibility of the corresponding linear complementarity problem implies solvability. In this article we show, under suitable conditions, that feasibility of ageneralized linear complementarity problem (i.e., defined over a more general closed convex cone in a real Hilbert space) implies solvability whenever the operator is copositive plus on that cone. We show that among all closed convex cones in a finite dimensional real Hilbert Space, polyhedral cones are theonly ones with the property that every copositive plus, feasible GLCP is solvable. We also prove a perturbation result for generalized linear complementarity problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.