Abstract

BackgroundThe variabilities in design and material of scan bodies have a major role in the positional transfer accuracy of implants. The purpose of this invitro study was to compare the 3D transfer accuracy (trueness and precision) of titanium base (TB) abutment position provided by 2 different scan bodies: one-piece scan body (SB) in comparison to two-piece healing abutment and scan peg (HA-SP).MethodsA maxillary model with a dummy implant in the 2nd premolar (Proactive Tapered Implant; Neoss) was 3D printed and TB (Ti Neolink Mono; Neoss) was tightened on the implant and scanned by using a laboratory scanner (inEos X5; Dentsply Sirona) (reference scan). An SB (Elos Medtech) and an HA-SP (Neoss) were subsequently connected to the implant and were scanned 10 times each by using the same scanner (test scans). All the scans were exported as STL files and imported into CAD software where the TBs were formed. Test scans were superimposed on reference scans for transfer accuracy analysis using 3D metrology software (GOM Inspect; GOM GmbH) in terms of angular deviation in vertical and horizontal directions, linear deviation in each XYZ axis of TBs and total linear deviation in all axes. Statistical analysis was done using independent sample t test. When Levene’s test for equality of variances was significant, Welch’s t-test was used. (P value < 0.05)ResultsSignificant differences were found amongst the tested groups in both angular and linear deviation in terms of trueness with less deviation values for the SB group (P < 0.001). For the precision, significant differences were found amongst the tested groups in angular deviation in vertical direction with less deviation value for the SB group compared to HA-SP group (P < 0.001). However, no significant difference was found between the tested groups regarding the angular deviation in horizontal direction (P = 1.000). Moreover, significant differences were found amongst the tested groups in linear deviations with less linear deviations in XYZ axes for SB compared to HA-SP group (P = 0.020, < 0.001, = 0.010 respectively).ConclusionsSB showed less angular and linear deviation values in the 3D positional transfer of TB than HA-SP indicating higher degree of accuracy of SB.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.