Abstract

BackgroundBody positioning affects the configuration and dynamic properties of the chest wall and therefore may influence decisions made to increase or decrease ventilating pressures and tidal volume. We hypothesized that unlike global functional residual capacity (FRC), component sector gas volumes and their corresponding regional tidal expansions would vary markedly in the setting of unilateral pleural effusion (PLEF), owing to shifting distributions of aeration and collapse as posture changed.MethodsSix deeply anesthetized swine underwent tracheostomy, thoracostomy, and experimental PLEF with 10 mL/kg of radiopaque isotonic fluid randomly instilled into either pleural space. Animals were ventilated at VT = 10 mL/kg, frequency = 15 bpm, I/E = 1:2, PEEP = 1 cmH2O, and FiO2 = 0.5. Quantitative lung computed tomographic (CT) analysis of regional aeration and global FRC measurements by nitrogen wash-in/wash-out technique was performed in each of these randomly applied positions: semi-Fowler’s (inclined 30° from horizontal in the sagittal plane); prone, supine, and lateral positions with dependent PLEF and non-dependent PLEF.ResultsNo significant differences in total FRC were observed among the horizontal positions, either at baseline (p = 0.9037) or with PLEF (p = 0.58). However, component sector total gas volumes in each phase of the tidal cycle were different within all studied positions with and without PLEF (p = < .01). Compared to other positions, prone and lateral positions with non-dependent PLEF had more homogenous VT distributions among quadrants (p = .051). Supine position was associated with most dependent collapse and greatest tendency for tidal recruitment (48 vs ~ 22%, p = 0.0073).ConclusionsChanges in body position in the setting of effusion-caused chest asymmetry markedly affected the internal distributions of gas volume, collapse, ventilation, and tidal recruitment, even though global FRC measurements provided little indication of these potentially important positional changes.

Highlights

  • Body positioning affects the configuration and dynamic properties of the chest wall and may influence decisions made to increase or decrease ventilating pressures and tidal volume

  • pleural effusion (PLEF) significantly reduced functional residual capacity (FRC) across all conditions when compared to baseline (p < 0.05), no significant differences in FRC were observed among the horizontal positions at baseline (p = 0.9) or with PLEF (p = 0.06)

  • In the setting of large unilateral pleural effusion and pigs passively ventilated and rotated randomly along the horizontal 0° axis: 1. Prone and lateral positioning radically alters the internal distributions of endexpiratory gas volume and ventilation observed supine but leaves relatively unaffected the global measures of FRC

Read more

Summary

Introduction

Body positioning affects the configuration and dynamic properties of the chest wall and may influence decisions made to increase or decrease ventilating pressures and tidal volume. We hypothesized that unlike global functional residual capacity (FRC), component sector gas volumes and their corresponding regional tidal expansions would vary markedly in the setting of unilateral pleural effusion (PLEF), owing to shifting distributions of aeration and collapse as posture changed. Chest wall characteristics often influence decisions made to increase or decrease positive end-expiratory pressure (PEEP) and tidal volume [2], and these are altered by body position [3]. A decline in functional residual capacity (FRC) and a global increase in chest wall stiffness are well documented to result in the transition from upright to horizontal supine posture within the vertical (sagittal) plane [3, 4]. Much less is known about regional volume changes that occur within the lung during recumbent rotations along the unchanging horizontal axis, especially in the setting of non-symmetrical chest disease

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call