Abstract
The accuracy with which human observers can determine the spatial location of a shape boundary was measured by vernier alignment. The vernier targets were presented as random-dot stereograms, with varying amounts of camouflage in the monocular image. Camouflage decreased vernier acuity, but when the camouflage was broken by stereoscopic disparity, acuity was improved. In the limiting case when the shape boundaries were defined by disparity information alone, vernier thresholds (75% correct, binary forced-choice) were in the region of 40 s visual angle. This is poor acuity in comparison to vernier thresholds with monocular contour, but if the limited resolution acuity for stereopsis is taken into account, cyclopean and monocular positional acuities can be considered quite similar in relation to their respective resolution limits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.