Abstract

In this paper, novel position sensorless state estimators with improved robustness to permanent magnet (PM) flux linkage variations in permanent magnet synchronous machines (PMSMs) are presented. Unlike state estimators using conventional infinite inertia or electromechanical models, the estimators presented here can also estimate the PM flux linkage, so they are not sensitive to its uncertainty. For each models used for state estimation, a detailed observability study is presented. Due to the nonlinear models, extended and unscented Kalman filter algorithms are used for the implementation. To compare the sensitivity of conventional and proposed state estimators to uncertainty in electrical parameters, numerical simulations are carried out. In addition, the computational burden of the estimators is compared by real-time execution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call