Abstract

Point cloud data obtained from scanning propellant grains with 3D scanning equipment exhibit positional uncertainty in space, posing significant challenges for calculating the relevant parameters of the propellant grains. Therefore, it is essential to normalize the position of each propellant grain’s point cloud. This paper proposes a normalization algorithm for propellant grain point clouds, consisting of two stages, coarse normalization and fine normalization, to achieve high-precision transformations of the point clouds. In the coarse normalization stage, a layer-by-layer feature points detection scheme based on k-dimensional trees (KD-tree) and k-means clustering (k-means) is designed to extract feature points from the propellant grain point cloud. In the fine normalization stage, a rotation angle compensation scheme is proposed to align the fitted symmetry axis of the propellant grain point cloud with the coordinate axes. Finally, comparative experiments with iterative closest point (ICP) and random sample consensus (RANSAC) validate the efficiency of the proposed normalization algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.