Abstract

Resistive random access memories (ReRAMs) are promising next-generation memory devices. Observation of the conductive filaments formed in ReRAMs is essential in understanding their operating mechanisms and their expected ultimate performance. Finding the position of the conductive filament is the key process in the preparation of samples for cross-sectional transmission electron microscopy (TEM) imaging. Here, we propose a method for locating the position of conductive filaments hidden under top electrodes. Atomic force microscopy imaging with a conductive tip detects the current flowing through a conductive filament from the bottom electrode, which reaches its maximum at a position that is above the conductive filament. This is achieved by properly biasing a top electrode, a bottom electrode and the conductive tip. This technique was applied to Cu/Ta2O5/Pt atomic switches, revealing the formation of a single Cu filament in a device, although the device had a large area of 5 × 5 μm2. Change in filament size was clearly observed depending on the compliance current used in the set process. It was also found from the TEM observation that the cross-sectional shape of the formed filament varies considerably, which is attributable to different Cu nuclei growth mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call