Abstract

Abstract DFT calculations were used to study the potential energy surfaces (PESes) of a full series of fluorinated benzoate radical anions (RAs). The sections of PESes along the C–F bond cleavage coordinates in polar media were built, and the transition states for RA fragmentation with fluoride anion elimination were located. The estimated reaction barrier heights let us interpret the experimental regularities of the RA decay including the process regioselectivity. The fragmentation mechanism was shown to depend on the position of the leaving fluorine atom. When defluorination occurs at an ortho - or meta - position to the CO 2 − group, the reaction coordinate involves pseudorotation as a way for odd electron density transfer to the breaking C–F bond. Additional gas phase calculations were performed to confirm the pseudorotational architecture of the PESes of polyfluorinated benzoate RAs. The results obtained clearly demonstrated that the multihole PES structure gives rise to the multichannel mechanism of RA cleavage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.