Abstract
The trajectory tracking control of parallel robots is challenging due to their complicated dynamics and kinematics. This paper proposes a position-based visual servoing (PBVS) approach for a 6-Revolute-Spherical-Spherical (6-RSS) parallel robot using adaptive sliding mode control in Cartesian space. A photogrammetry sensor C-Track 780 in the eye-to-hand configuration is adopted to measure the real-time pose of the robot end-effector, which can avoid the calculation of robot forward kinematics and provide more flexibility for controller design. An adaptive Kalman filter is utilized to deal with uncertain noises in visual measurements to increase the pose estimation accuracy. A sliding mode controller with strong robustness is designed to cope with system uncertainties, and a radial basis function (RBF) neural network is incorporated to realize the auto-tuning of the control gains, which make the robot effectively track different trajectories with time-varying conditions in real applications. Based on Lyapunov theorem, the stability analysis of the controller has been done. Experiments have been conducted to validate the effectiveness of the proposed strategy and illustrate the superiority of the designed controller.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.