Abstract
This paper develops efficient methods for computing portfolio value‐at‐risk (VAR) when the underlying risk factors have a heavy‐tailed distribution. In modeling heavy tails, we focus on multivariate t distributions and some extensions thereof. We develop two methods for VAR calculation that exploit a quadratic approximation to the portfolio loss, such as the delta‐gamma approximation. In the first method, we derive the characteristic function of the quadratic approximation and then use numerical transform inversion to approximate the portfolio loss distribution. Because the quadratic approximation may not always yield accurate VAR estimates, we also develop a low variance Monte Carlo method. This method uses the quadratic approximation to guide the selection of an effective importance sampling distribution that samples risk factors so that large losses occur more often. Variance is further reduced by combining the importance sampling with stratified sampling. Numerical results on a variety of test portfolios indicate that large variance reductions are typically obtained. Both methods developed in this paper overcome difficulties associated with VAR calculation with heavy‐tailed risk factors. The Monte Carlo method also extends to the problem of estimating the conditional excess, sometimes known as the conditional VAR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.