Abstract

Differences in entropies of competing transition states can direct kinetic selectivity. Understanding and modeling such entropy differences at the molecular level is complicated by the fact that entropy is statistical in nature; i.e., it depends on multiple vibrational states of transition structures, the existence of multiple dynamically accessible pathways past these transition structures, and contributions from multiple transition structures differing in conformation/configuration. The difficulties associated with modeling each of these contributors are discussed here, along with possible solutions, all with an eye toward the development of portable qualitative models of use to experimentalists aiming to design reactions that make use of entropy to control kinetic selectivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call