Abstract

Facile, customizable platforms are important for a variety of microfluidic applications. This work presents a platform that utilizes surface tension induced pumping based on Young–Laplace pressure. The approach allows modifiable transport of fluids across surfaces without external pumping modules. The Laplace-chip is based on a superhydrophobic coating (NeverWet™) that is patterned by laser micromachining. For fast and consistent deposition of specific liquid volumes/droplets onto the “Laplace-chip” without the need for conventional fluid dispensing tools (e.g. pipette), a multiplexed droplet factory (MDF) was developed. The MDF is placed above the Laplace-chip and consists of cylindrial reservoirs that are filled by a “pour and swipe” approach. It enables the formation of hundreds of droplets (10–140 µL, 7.3% deviation) with both position and volume control as well as the simultaneous initiation of Young–Laplace induced pumping on the Laplace-chip. Furthermore, the flowrate of Young–Laplace induced pumping is adjustable through different pattern designs and dispensed droplet volumes. The Laplace-chip and MDF is used to carry out silver nanoparticle and nanocluster synthesis, where the reagent introduction rate is critical to material properties, to demonstrate flowrate controlled application possibilities. A Laplace-chip employing different channel length is employed to carry out the reduction of Ag+ to Ag0, using NaBH4. Low reducing agent concentrations and long pumping times (40–60 min) resulted in molecule-like silver cluster (AgNC) synthesis, while high reducing agent concentrations and short pumping times (5–20 min) led to the synthesis of silver nanoparticles (AgNPs).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call