Abstract
A portable Hadamard-transform Raman spectrometer with excellent performance was fabricated consisting of a 785 nm laser, an optical filter, an optical system, a control system, and a signal processing system. As the core of the spectrometer, the optical system was composed of a slit, collimator, optical grating, reflector, digital micromirror devices (DMD), lens system, and InGaAs photodetector. Compared with a conventional dispersive Raman spectrometer, the proposed Raman spectrometer adopted the DMD and corresponding controlling device (DLPC350 control chip) to collect the Raman spectrum. Thus, in our design, the gratings are fixed, while the full Raman spectrum was collected by the deflection of the micromirror. This design can greatly improve the vibration resistance ability of the spectrometer since the gratings are not rotating during the spectrum collecting. More importantly, Hadamard-transform was used as signal processing technology, which has the ability of faster calculation, the merits of high energy input, single detector multichannel simultaneous detection (imaging) ability, and high signal-to-noise ratio (SNR). Hence, the Hadamard-transform portable Raman spectrometer has the potential to be applied in the field of point-of-care testing (POCT).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have