Abstract
The application of photoelectrochemical (PEC) water splitting is limited by the sluggish surface oxygen evolution reaction (OER) kinetics. OER kinetics can be effectively improved through cocatalyst engineering. However, the tardy transfer process and serious recombination of carriers are the key factors restricting the cocatalyst development. Taking BiVO4 as an example, a Co-modified heme film rich in large conjugated ring structures is introduced onto the photoanode surface using a solvothermal method. This film functions as an efficient cocatalyst. It considerably reduces the surface overpotential, promotes the transfer of photogenerated holes, and boosts the kinetics of OER by specifically affecting the formation of OOH*. Simultaneously, the formed CoOV bonds induce strong interaction at the photoanode/cocatalyst interfaces, reducing the recombination of photogenerated carriers. Consequently, the onset potential of the optimized photoanode decreases from 0.45 to 0.07V and the photocurrent density at 1.23V versus reversible hydrogen electrode boosts to 5.3mA cm-2 . This work demonstrates a facile strategy for designing cocatalysts to obtain rapid hole transfer capability and reduced carrier recombination for improved PEC performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.