Abstract

Novel hybrid organic–inorganic catalysts constituted by iron(III) or manganese(III) 5,10,15,20-tetrakis(pentafluorophenyl) porphyrin entrapped in an alumina amorphous matrix have been prepared. The hybrid materials were obtained by a non-hydrolytic sol–gel route, through the condensation of aluminium chloride with diisopropyl ether in the presence of metalloporphyrin. The presence of the metalloporphyrin entrapped in the alumina matrix is confirmed by ultraviolet–visible spectroscopy and electron spectroscopic imaging. The material was also analysed by infrared spectroscopy, selected area diffraction, scanning electron microscopy, thermogravimetric analysis and differential thermal analysis, and its surface area was determined. Comparison between the leaching of metalloporphyrin from non-hydrolytic materials and adsorbed metalloporphyrin on commercial neutral alumina confirms that in the non-hydrolytic materials the metalloporphyrin is entrapped and not just adsorbed on the alumina surface. The use of a conventional hydrolytic sol–gel process leads to the complete leaching of the metalloporphyrin from the matrix, underlining the importance of the non-hydrolytic alumina gel process in the matrix preparation. The prepared alumina matrix materials are amorphous, even after heat treatment up 270 °C. The new catalysts prepared were tested for their ability to catalyse the epoxidation of (Z)-cyclooctene using iodosylbenzene as oxygen donor, giving high yields in the epoxidation, similar to those obtained using the metalloporphyrin in solution or supported on a silica matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.