Abstract

We have demonstrated the construction of multiple porphyrin arrays in the tobacco mosaic virus (TMV) supramolecular structures by self-assembly of recombinant TMV coat protein (TMVCP) monomers, in which Zn-coordinated porphyrin (ZnP) and free-base porphyrin (FbP) were site-selectively incorporated. The photophysical properties of porphyrin moieties incorporated in the TMV assemblies were also characterized. TMV-porphyrin conjugates employed as building blocks self-assembled into unique disk and rod structures under the proper conditions as similar to native TMV assemblies. The mixture of a ZnP donor and an FbP acceptor was packed in the TMV assembly and showed energy transfer and light-harvesting activity. The detailed photophysical properties of the arrayed porphyrins in the TMV assemblies were examined by time-resolved fluorescence spectroscopy, and the energy transfer rates were determined to be 3.1-6.4x10(9) s(-1). The results indicate that the porphyrins are placed at the expected positions in the TMV assemblies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call