Abstract
Redox-active molecules that afford high charge density upon attachment to an electroactive surface are of interest for use in molecular-based information-storage applications. One strategy for increasing charge density is to covalently link a second redox center to the first in an architecture that uses the vertical dimension in essentially the same molecular footprint. Toward this end, a set of four new porphyrin dyads have been prepared and characterized. Each dyad consists of two zinc porphyrins, an intervening linker (p-phenylene or 4,4'-diphenylethyne), and a surface attachment group (ethynyl or triallyl group). The porphyrin dyads were attached to an electroactive Si(100) surface and interrogated via electrochemical and FTIR techniques. The charge density obtainable for the ethynyl-functionalized porphyrin dyads is approximately double that observed for an analogously functionalized monomer, whereas that for the triallyl-functionalized dyads is at most 40% larger. These results indicate that the molecular footprint of the former dyads is similar to that of a monomer while that of the latter dyads is larger. For both the ethynyl- and triallyl-functionalized porphyrin dyads, higher charge densities (smaller molecular footprints) are obtained for the molecules containing the 4,4'-diphenylethyne versus the p-phenylene linker. This feature is attributed to the enhanced torsional flexibility of the former linker compared with that of the latter, which affords better packed monolayers. The FTIR studies indicate that the adsorption geometry of all the dyads is qualitatively similar and similar to that of monomers. However, the dyads containing the 4,4'-diphenylethyne linker sit somewhat more upright on the surface than those containing the p-phenylene linker, generally consistent with the smaller molecular footprint for the former dyads. Collectively, the high surface charge density (34-58 muC.cm(-)(2)) of the porphyrin dyads makes these constructs viable candidates for molecular-information-storage applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have