Abstract

Electrochemical and laser-induced etching processes were simultaneously used to synthesize the nanowires structure of porous silicon (PS). Surface morphology and structural properties of nanostructured silicon were characterized by using scanning electron microscopy (SEM) and atomic forces microscopy (AFM) images. Nanowires with dimensions of few nanometers were formed on the whole etched surface. The optical properties of silicon nanostructures were studied. Raman spectra were shifted and broadened relatively to 519.9 cm−1 of PS prepared by electrochemical etching, and shifted to 517.2 cm−1 for laser-induced etching process and to 508.9 cm−1 for electrochemical and laser etching simultaneously. Blue shift luminescence was observed at 649.6 nm for PS produced by electrochemical etching, and at 629.5 nm for laser-induced etching. PS produced a blue shift at 626.5 nm using both etching procedures simultaneously. X-Ray diffraction (XRD) was used to investigate the crystallites size of the PS as well as to provide an estimate of the degree of crystallinty of the etched sample.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call