Abstract

Rice became the main product of agriculture in agrarian countries including Indonesia. Rice husk is a waste of rice as one of the largest silica producers. Silica from rice husks can be used as a source of silica in the manufacture of sodium silicate as an alternative to the formation of mesoporous silica at a low price. In this research, the characterization of mesoporous silica nanoparticle (MSN) MCM-41 from rice husk (rice husk) with sol-gel method followed by hydrothermal treatment. Silica extraction was performed by titrating sodium silica using HCl method until the gel was formed. The mesoporous synthesis was performed with the addition of CTAB. The titration is then carried out using a solution of acetic acid. XRD shows silica with an amorphous structure. The FTIR results show that extraction silica and MSN MCM-41 contain pure silica displayed with Si-O-Si functional groups in the sample. The SEM results show MSN MCM-41 images such as a coral-like structure of agglomerated silica and the higher temperature hydrothermal treatment then it would be the more large size of particles. The material has a hexagonal pore structure such as a honeycomb as characteristic of MCM-41 with a pore size of 2.535 nm which includes mesoporous material. The result of nitrogen adsorption-desorption isotherms shows lower hydrothermal temperature will increase the specific surface area and decrease average pore size, where the best result with surface area value is 825.365 m2/gr and average pore size is 6.10426 nm obtained from process hydrothermal at 85°C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call