Abstract

The production and characterization of AI-700, an intravenously administered ultrasound contrast agent under investigation for myocardial perfusion echocardiography, are described. The product consists of small, porous microparticles filled with decafluorobutane gas, and formulated as a dry powder. Small scale spray drying studies demonstrated that porous PLGA microparticles could be produced with varying porosity using ammonium bicarbonate as a volatile pore-forming agent. The porous microparticles of AI-700 were created aseptically by spray drying a water-in-oil emulsion containing poly- d, l-lactide-co-glycolide, 1,2-diarachidoyl- sn-glycero-3-phosphocholine, and ammonium bicarbonate using a two-chamber spray dryer. The porous microparticles were further formulated into a dry powder drug product (AI-700) containing decafluorobutane gas and excipients. The dry powder was reconstituted with sterile water prior to evaluation. Microscopy demonstrated that the microparticles were sphere-shaped and internally porous. The microparticles were appropriately sized for intravenous administration, having an average diameter of 2.3 μm. Zeta-potential analysis demonstrated that the microparticles would be expected to be stable post-reconstitution. The microparticles retained encapsulated gas post-reconstitution, had high acoustic potency that was stable over time and were physically stable upon exposure to high-power ultrasound, as used clinically. AI-700 has the characteristics desirable for an intravenously administered ultrasound contrast agent for myocardial perfusion echocardiography.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call