Abstract

Rheumatoid arthritis (RA) is a progressive autoimmune disease and drug therapy has been restricted due to poor therapeutic efficacy and adverse effects. In RA synovium, dendritic cells present self-antigens to activate cascade immune pathway. Furthermore, downstream macrophages secrete high levels of pro-inflammatory cytokines; Hyperplasia of activated synovial fibroblasts (FLS) is responsible for hypoxic synovium microenvironment, secretion of cytokines/chemokines and erosion of bone/cartilage tissues. Positive feedback loop of inflammation between macrophages and FLS independent of antigen-presentation is constructed. Herein, an injectable pH-sensitive peptide hydrogel encapsulating siRNA/Methotrexate-polyethyleneimine (siMP, including sip65MP, sip38MP, siCD86MP) and Bismuthene nanosheet/Methotrexate-polyethyleneimine (BiMP) is successfully developed. Among them, siCD86MP reduces protein level of co-stimulatory molecule CD86 while sip65MP and sip38MP separately inhibit NF-κB and MAPK-p38 pathways of macrophages and FLS to suppress secretion of cytokines and MMPs. Meanwhile, reduction in anti-apoptotic property of FLS induced by inhibition of NF-κB pathway has a synergistic effect with photodynamic therapy (PDT) and photothermal therapy (PTT) mediated by BiMP for FLS elimination, effectively ameliorating hypoxic synovium microenvironment. After being injected into synovium, hydrogel responds to acidic microenvironment and serves as a reservoir for sustained drug release and inherent retention capacity of which enables cationic nanoparticles to bypass tissue barrier for precise synovium targeting. This brand-new drug delivery system combines modulating cascade immune pathway from beginning to end by RNAi and eliminating FLS for improving synovium microenvironment by phototherapy together, providing a robust strategy for clinical RA treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.