Abstract
Chemical fixation of CO2 and synthesis of biofuels through convenient reaction pathways are very demanding in the context of sustainable and eco-friendly catalysis. Herein, we report the synthesis of iron-phosphonate nanoparticles HPFP-1(NP) through the simple chemical reaction between hexamethylenediamine-N,N,N′,N′-tetrakis-(methylphosphonic acid) and FeCl3 under hydrothermal conditions. The material has been characterized by transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), N2 adsorption/desorption studies and FE-SEM. This porous material showed high catalytic activity for the synthesis of organic carbonates from a wide range of epoxides at room temperature in the presence of CO2 at atmospheric pressure. This nanocatalyst also exhibited excellent catalytic activity for the conversion of levulinic acid into alkyl levulinates. The HPFP-1(NP) catalyst showed high recycling efficiency in these catalytic reactions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have