Abstract

A porous chitosan–manganese dioxide (PC–MnO2) nanohybrid was synthesized using an in situ reduction method, in which potassium permanganate solution and nanoporous chitosan acted as precursor and reducing agent. The chemical and structural properties of PC–MnO2 were characterized using scanning and transmission electron microscopies, X‐ray diffraction, thermogravimetric analysis and Fourier transform infrared spectroscopy. Highly dispersed MnO2 nanoparticles in a matrix of porous chitosan showed high catalytic activity for selective aerobic oxidation of alkylarenes and alcohols without using any bases or expensive oxidants. Short reaction time, ease of product separation by filtration and recyclability of the catalyst make it environmentally and economically favoured for the synthesis of versatile aldehydes and ketones. Copyright © 2015 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.